Phase equilibria in the system YPO₄-NaPO₃

Władysława Szuszkiewicz

Department of Inorganic Chemistry, Faculty of Engineering and Economics, Academy of Economics, 118/120 Komandorska, 53345 Wrocław (Poland)

(Received 6 August 1991)

Abstract

The phase diagram of the system YPO_4 -NaPO₃ has been determined by differential thermal analysis, X-ray diffraction, infrared spectroscopy and microscopic methods. The system contains one intermediate compound, Na₂YP₃O₁₀. This double triphosphate melts incongruently at 640°C.

INTRODUCTION

Tripolyphosphates of rare earth elements and mixed tripolyphosphates of lanthanides and alkali metals are a relatively unknown group of compounds. There are only a few published works that report their existence and their methods of synthesis. Tripolyphosphates of the lanthanides La, Ce, Nd, Sm, Gd, Dy and Y have been obtained [1–8]. The authors have also managed to obtain mixed sodium–lanthanide tripolyphosphates of NaLn₃(P₃O₁₀)₂ · H₂O type (where Ln = Pr, Tb, Ho, Eu, Yb, Lu). In the systems $M_5P_3O_{10}$ –Eu(NO₃)₃–H₂O (where M = Cs, NH₄) [9], mixed europium tripolyphosphates were isolated. These compounds were obtained from solutions. There is no information in the literature on phase investigation of tripolyphosphates.

The previously unknown binary section YPO_4 -NaPO₃ was determined during our phase investigations on the ternary system Y_2O_3 -Na₂O-P₂O₅. It was discovered that sodium-yttrium tripolyphosphate with the formula Na₂YP₃O₁₀, is formed in this system. However, the compound NaYP₂O₇, which would correspond to the KYP₂O₇ identified in ref. 10, was not obtained.

Correspondence to: W. Szuszkiewicz, Department of Inorganic Chemistry, Faculty of Engineering and Economics, 118/120 Komandorska, 53345 Wrocław, Poland.

EXPERIMENTAL

The following starting reagents were used: Y_2O_3 , 99.99%; H_3PO_4 , 85%, analytical grade; NaH_2PO_4 , analytical grade; Na_2HPO_4 , analytical grade; $NH_4H_2PO_4$, analytical grade; and Na_2CO_3 , analytical grade. YPO_4 , $Y_2P_4O_{13}$, $Y(PO_3)_3$, $NaPO_3$ and $Na_4P_2O_7$ were synthesised in our laboratory. Yttrium orthophosphate YPO_4 was obtained by the method given in ref. 11. Yttrium phosphate $Y_2P_4O_{13}$ was prepared according to ref. 12. Yttrium metaphosphate $Y(PO_3)_3$ was prepared from Y_2O_3 and H_3PO_4 according to ref. 13. Sodium metaphosphate $NaPO_3$ was obtained from NaH_2PO_4 by heating at 500°C for 1 h. Sodium pyrophosphate $Na_4P_2O_7$ was prepared from Na_2HPO_4 by heating at 150°C for 1 h and at 500°C for 12 h.

The binary system YPO_4 -NaPO₃ was examined by differential thermal analysis of heating, powder X-ray diffraction, infrared spectroscopy and microscopy in reflected light.

The differential thermal analysis of heating was performed by means of a derivatograph, type 3427 (MOM, Hungary) within the temperature range $20-1450^{\circ}$ C (platinum cup, air atmosphere). High purity Al₂O₃ was used as the standard substance.

The phases were identified by X-ray powder diffraction on a HZG-4 diffractometer (Guinier camera) with Cu K α radiation. In order to identify phases occurring in the system, infrared spectra were measured over the range 1400-400 cm⁻¹ with an IR-75 Specord spectrophotometer. The samples were prepared in the form of pellets in KBr.

The phase purity of the reagents and the phase structure of the products were studied microscopically (microsections were examined in reflected light).

RESULTS AND DISCUSSION

Figure 1 shows the phase diagram of the system YPO_4 -NaPO₃. This system was investigated within the composition range 30-100 wt.% NaPO₃ and up to approx. 1500°C, by thermal analysis (heating), X-ray diffraction, microscopy and IR spectroscopy. It was discovered that the binary tripolyphosphate with the molar ratio YPO_4 : NaPO₃ = 1:2 is formed, and it was given the formula Na₂YP₃O₁₀. This compound melts peritectically at 640°C giving YPO₄ and a liquid rich in NaPO₃. It was characterised on the basis of thermal and X-ray examinations. Thermal analysis of the pure Na₂YP₃O₁₀ phase showed that there are two exothermal effects on the DTA heating curve: at 640°C and at approx. 1200°C. The first effect proceeds without mass loss whereas the second has a well marked mass loss on the TG curve. In order to interpret these effects, the Na₂YP₃O₁₀ sample was sintered at 700°C for 1 h and quenched. X-ray analysis of the obtained

Fig. 1. T, DTA and TG curves of Na₂ YP₃O₁₀, mass 330 mg, in air atmosphere.

product showed the presence of YPO₄. Examinations of isothermal mass losses were also carried out for $Na_2YP_3O_{10}$ (at 1200°C). To achieve this, pressed pellets of this compound were placed in a platinum crucible, sintered at 1200°C and weighed several times. It was discovered that, in these conditions, pure $Na_2YP_3O_{10}$ decomposes completely to YPO₄ after approx. 90 h. The results of the investigations indicate that $Na_2YP_3O_{10}$ decomposes incongruently (at 640°C) according to the reaction

$$Na_2YP_3O_{10}(cr) \rightarrow YPO_4(cr) + NaPO_3(am)$$

where cr = crystal form and am = amorphous form.

A comparison of the thermal effects that can be seen in Figs. 2 and 3 confirms these conclusions. Both figures show an analogous thermal effect on the TG curves at approx. 1200°C, which results from the mass loss caused by the decomposition (vaporisation) of NaPO₃ at 1200°C. Table 1 shows X-ray data for Na₂YP₃O₁₀ estimated by the powder method.

Numerous examinations carried out in our laboratory led to the formulation of three methods for the synthesis of pure $Na_2YP_3O_{10}$:

1. Sintering a 1:1 molar ratio mixture of Na_2CO_3 and $Y(PO_3)_3$ at 550°C for 24 h.

2. Sintering the mixture composed of 1 mole of $Na_4P_2O_7$ and 1 mole of $Y_2P_4O_{13}$ at 580°C for 48 h.

3. Sintering the mixture of $NH_4H_2PO_4$, Y_2O_3 and Na_2CO_3 (6:1:2 molar ratio) at 200, 300, 500 and 550°C for 12 h at each temperature.

It is worth mentioning that, although numerous attempts were made, pure $Na_2YP_3O_{10}$ could not be obtained from the stoichiometric mixture of YPO_4 and $NaPO_3$ by the solid phase reaction. This may result from the large differences in the melting points of the initial phosphates, YPO_4

Fig. 2. Phase diagram of the system YPO₄-NaPO₃.

(2150°C) and NaPO₃ (627°C), and from the low temperature of the peritectic decomposition of Na₂YP₃O₁₀ (640°C). Because of these difficulties, samples for investigations of the system YPO₄-NaPO₃ were prepared from YPO₄ and Na₂YP₃O₁₀ to determine phase equilibria for that part of the

Fig. 3. T, DTA and TG curves of NaPO₃, mass 330 mg, in air atmosphere.

$2\theta(\exp)$	d(exp)	I/I_0	
11.04	8.015	12	
13.14	6.739	5	
13.41	6.605	7	
14.19	6.242	15	
14.67	6.040	5	
17.47	5.075	4	
17.74	4.999	6	
19.70	4.506	4	
20.63	4.305	15	
21.40	4.153	100	
25.03	3.558	10	
25.93	3.436	45	
26.20	3.402	45	
27.14	3.286	7	
29.23	3.055	10	
29.44	3.034	14	
30.52	2.929	84	
31.03	2.882	35	

X-ray data for Na₂YP₂O₁₀

TABLE 1

system rich in yttrium orthophosphate; and from $Na_2YP_3O_{10}$ and $NaPO_3$ to determine the phase equilibria for that part of the system rich in sodium metaphosphate. The initial compounds, weighed in the correct amounts, were ground, pelletised and synthesised, initially by sintering at 550°C for 12 h.

Figure 1 shows the liquidus and solidus curves; the equilibria in the solid phase in the YPO₄-NaPO₃ system were determined by differential thermal analysis of heating. The peritectic reaction takes place up to 81 wt.% of NaPO₃. There is a eutectic in the system at 600°C, at 90 wt.% NaPO₃. Pure sodium metaphosphate shows two known polymorphic transitions ($\alpha \rightarrow \beta$ at 510°C and $\beta \rightarrow \gamma$ at 404°C). Both these transitions are reflected in lowered thermal effects in the YPO₄-NaPO₃ system.

REFERENCES

- 1 A.G. Buyers, E. Giesbrecht and L.F. Audricht, J. Inorg. Nucl. Chem., 5 (1957) 133.
- 2 E. Giesbrecht and L.F. Audricht, J. Inorg. Nucl. Chem., 6 (1958) 308.
- 3 E. Giesbrecht, J. Inorg. Nucl. Chem., 15 (1960) 265.
- 4 E. Giesbrecht, An. Assoc. Brasil. Quim., 21 (1964) 13.
- 5 E. Giesbrecht and E.B. Melardi, An. Acad. Brasil. Ciene., 35 (1963) 527.
- 6 E. Giesbrecht and E.B. Melardi, An. Acad. Brasil. Ciene., 36 (1964) 275.
- 7 E.B. Melardi and E. Giesbrecht, An. Acad. Brasil. Ciene., 37 (1965) 221.
- 8 E. Giesbrecht and E.B. Melardi, An. Assoc. Brasil. Quim., 25 (1967) 43.
- 9 G.W. Rodiczeva and N.M. Romanova, Inorg. Mater., 15 (1979) 963.

102

- 10 M. Gabelica-Robert and P. Tarte, Studies in Inorganic Chemistry, 3 (1983) 475; Solid State Chem. Proc. 2nd Eur. Conf., Veldhoven, The Netherlands, 7-9 June 1982.
- 11 R. Kijkowska, First International Congress on Phosphorus Compounds, Rabat, October 17-21, 1977, Institute Mondial du Phosphate, Paris, 1977, 725.
- 12 D. Agraval and F.A Hummel, J. Elektrochem. Soc., 127 (1980) 1550.
- 13 W. Szuszkiewicz and T. Znamierowska, Pol. J. Chem., 63 (1989) 381.